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Chapter 1.  Introduction

1.1. Wafer Fusion of Lattice-mismatched Materials

In describing the first reported transistor formed via wafer fusion, this

dissertation demonstrates the potential of wafer fusion for the production of

otherwise unobtainable, electrically active heterointerfaces between lattice-

mismatched materials. Wafer fusion (also called direct wafer bonding) is an attractive

technique for integrating disparate materials, as the conventional method of epitaxial

growth has had little success in integrating lattice-mismatched crystals. Consider the

epitaxial growth of a crystal film onto a crystal substrate. During growth, if the two

crystals have lattice constants that differ by even one percent, the film will grow

elastically strained until it reaches its critical thickness.  At that point, “threading”

dislocations are likely to form at the growth interface and glide (i.e. “thread”) through

the film, to the heterointerface between the two materials, forming “misfit”
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dislocations at the heterointerface. Generally, threading dislocations drastically

degrade a crystal’s electronic and optoelectronic properties. In contrast, wafer fusion

allows a single crystal to be transferred from one substrate to another, where the new

substrate can be an amorphous material, a polycrystal, or a single crystal of different

lattice constant, crystal structure, or crystallographic orientation.[1] The wafer-fused

interface will still have misfit dislocations, due to the difference in lattice constants of

the two constituent crystals. However, the transferred film will have no threading

dislocations, and would hence maintain its beneficial electronic or optoelectronic

properties.

Wafer fusion, which joins two materials placed in intimate contact under

elevated temperature and pressure, has proven to be effective in forming a number of

heterogeneous devices from lattice-mismatched materials. These devices include

GaAs-InP vertical-cavity[2] and microdisk[3] lasers, InGaAs-Si avalanche

photodiodes,[4] and InGaAsP-AlGaAs photonic crystal lasers.[5] Such a variety of

thick-layer material combinations would not have been obtainable, thus far, via

conventional all-epitaxial formation methods. This issue of integrating disparate

materials is particularly important for GaN, as progress in GaN research is presently

limited by the lack of an appropriate epitaxial growth substrate.[6, 7] Hence, the

novel technique of wafer fusion is a promising alternative to an all-epitaxial GaN

device formation process.[8, 9]
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1.2. GaN for Electronic Devices

GaN is a relatively new semiconductor, widely studied and reported in

numerous applied physics, materials science, and electrical engineering journals and

conferences. There is even a peer-reviewed journal devoted solely to nitride research,

the Materials Research Society’s MRS Internet Journal of Nitride Semiconductor

Research. GaN has had a remarkable history, as it initially advanced quickly from

research to commercialization. Due to pioneering research in the 1970s-1990s of

Amano, Akasaki, Pankove, and Nakamura [10-17], GaN light-emitting diodes (LEDs)

recently emerged as a long-awaited, strong, and efficient light source capable of blue,

green, and ultraviolet emission. By complementing the already commercialized red

and yellow LEDs, the new GaN LEDs finally rendered the full color spectrum

achievable via energy-efficient and long-lifetime LEDs. From this auspicious

beginning, GaN research has expanded to now encompass a wide variety of areas,

including high-power electronics [18-38], spintronics[39], nanostructures [40],

microphotonics [41], and of course green, blue, and ultraviolet photoelectronics [42-

52].

1.3. Motivation for the n-AlGaAs/p-GaAs/n-GaN HBT

The large breakdown field and anticipated saturation velocity of GaN make

this novel material particularly promising for high-frequency, high-power devices.

With this goal in mind, quite a few researchers are working to develop GaN-based
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heterojunction bipolar transistors (HBTs).[22-37] Although results thus far have

been promising, there are still a number of outstanding material issues, related to the

p-GaN material. For example, AlGaN-GaN HBTs appear to be limited by large Mg

acceptor ionization energies and low hole mobilities.[36]

This dissertation describes the use of wafer fusion to form HBTs with an

AlGaAs-GaAs emitter-base and a GaN collector. By avoiding the use of p-GaN, this

transistor design avoided the problems presently limiting bipolar transistors made

entirely of III-N materials. GaN was used as the collector material, because its larger

energy bandgap (Eg, GaN = 3.39eV) implied that it could withstand a higher electric

field than GaAs (Eg, GaAs = 1.42eV). Compared to a p-GaAs/n-GaAs base-collector,

the p-GaAs/n-GaN base-collector junction was expected to withstand a higher

reverse bias, allowing the HBT to operate at higher voltages and current levels

without breakdown. AlGaAs-GaAs was chosen as the emitter-base material system,

due to its high emitter injection efficiency, low base transit time, high current gain,

and widely reported success in HBT applications.[53-55] In contrast to GaN growth

technology, AlGaAs-GaAs growth was already well developed, producing uniform

low-defect material layers, which led to reproducible electrical features such as turn-

on voltage. Because the high degree of lattice mismatch between GaAs (lattice

constant of 5.65A) and GaN (3.19A) precluded an all-epitaxial formation of this

device, the GaAs-GaN heterostructure was formed via the novel technique of wafer

fusion. Thus, this project demonstrated the integration of device materials, chosen for
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their optimal electronic properties, unrestricted by the conventional (and very

limiting) requirement of lattice-matching.

1.4. Challenges of GaN Wafer Fusion

As discussed in Section 1.1, wafer fusion has proven to be effective in

forming a number of heterogeneous devices from lattice-mismatched materials.

However, those devices did not require the wafer-fused interface to serve as a critical

device active region. Instead, those device active regions were located far from the

crystallographic imperfection of the fused interface. In contrast, the device described

in this dissertation placed stringent demands on the electronic quality of the fused

interface, as it served also as the base-collector junction of an HBT. Uncontrolled

bond reconstruction or residual impurities at the fused interface may have produced

electronic traps or barriers, which in turn may have produced the low common-

emitter current gain observed in these wafer-fused HBTs.

Bond reconstruction is indeed a primary issue in the wafer fusion of GaN.

Ideally, during the fusion process, Ga-As and Ga-N bonds would break on the wafer

surfaces, and new bonds would form between the two wafers. However, the melting

point of GaN at atmospheric pressure is very high (>1200oC) relative to the fusion

process temperature (500-750oC) for this dissertation study. Prior to this

dissertation study, GaN fusion was reported at temperatures up to 1000oC.[56-59]

Even at these elevated fusion temperatures, the resulting fused interface was
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notoriously non-uniform and irreproducible. Moreover, only junctions fused at 700-

1000oC were proven to be electrically conducting. At the start of this dissertation

study, it was uncertain if temperatures less than 700oC would provide enough

thermal energy to form a mechanically strong and electrically active junction between

GaAs and GaN. This endeavor seemed all the more challenging, as the GaAs surface

was non-polar (Ga- and As-terminated (100)) while the GaN surface was polar (Ga-

terminated (001)). It was remarkable that fusion did occur at temperatures as low as

500oC, and that the resulting interfaces were suitable as base-collector junctions of

functioning HBTs (Chapters 4-6). However, TEM studies (Section 2.5) indicated

that bond reconstruction at the fused interface was less than ideal. The observed

disorder was common to other fused semiconductor junctions [60-62], but the

disorder of these other fused junctions was not correlated with systematically varied

fusion process conditions. In this dissertation study, the disorder was found to vary

with the fusion process temperature, and may have contributed to variations in HBT

electrical performance observed for HBTs fused over a wide range of temperatures

(500-750oC).

Aside from the issue of electronic traps and barriers at the fused interface, the

elevated temperature of the fusion process (500-750oC) may itself have accelerated

dopant and defect diffusion, potentially degrading the entire material structure and

hence the entire energy band structure as well. It is important to note that the fusion

temperature was often higher than the growth temperature of the AlGaAs-GaAs

materials (585oC); hence, diffusion was most likely occurring in these structures
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during the fusion process. Lower fusion temperatures would thus seem to be

desirable, but for the device application in this dissertation, the fusion process

conditions were required to provide enough thermal energy to form a mechanically

robust and electrically active fused interface. In fact, TEM and electrical (I-V) studies

did reveal a thicker and less electrically active disordered layer at the interface (1.5-2

nm), when formed via fusion at a lower temperature (550oC). Due to these two

competing factors, of diffusion at high temperature vs. interfacial disorder at low

temperature, wafer fusion studies must include a systematic variation of process

conditions, in order to achieve proper characterization and optimization. In this

dissertation study, fusion conditions were systematically varied over a wide range

(500-750oC, 0.25-2hours) and were correlated with the electrical, chemical, and

structural quality of the resulting interface.
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